1,013 research outputs found

    The Gauge Fields and Ghosts in Rindler Space

    Full text link
    We consider 2d Maxwell system defined on the Rindler space with metric ds^2=\exp(2a\xi)\cdot(d\eta^2-d\xi^2) with the goal to study the dynamics of the ghosts. We find an extra contribution to the vacuum energy in comparison with Minkowski space time with metric ds^2= dt^2-dx^2. This extra contribution can be traced to the unphysical degrees of freedom (in Minkowski space). The technical reason for this effect to occur is the property of Bogolubov's coefficients which mix the positive and negative frequencies modes. The corresponding mixture can not be avoided because the projections to positive -frequency modes with respect to Minkowski time t and positive -frequency modes with respect to the Rindler observer's proper time \eta are not equivalent. The exact cancellation of unphysical degrees of freedom which is maintained in Minkowski space can not hold in the Rindler space. In BRST approach this effect manifests itself as the presence of BRST charge density in L and R parts. An inertial observer in Minkowski vacuum |0> observes a universe with no net BRST charge only as a result of cancellation between the two. However, the Rindler observers who do not ever have access to the entire space time would see a net BRST charge. In this respect the effect resembles the Unruh effect. The effect is infrared (IR) in nature, and sensitive to the horizon and/or boundaries. We interpret the extra energy as the formation of the "ghost condensate" when the ghost degrees of freedom can not propagate, but nevertheless do contribute to the vacuum energy. Exact computations in this simple 2d model support the claim made in [1] that the ghost contribution might be responsible for the observed dark energy in 4d FLRW universe.Comment: Final version to appear in Phys. Rev. D. Comments on relation with energy momentum computations and few new refs are adde

    About Designing an Observer Pattern-Based Architecture for a Multi-objective Metaheuristic Optimization Framework

    Get PDF
    Multi-objective optimization with metaheuristics is an active and popular research field which is supported by the availability of software frameworks providing algorithms, benchmark problems, quality indicators and other related components. Most of these tools follow a monolithic architecture that frequently leads to a lack of flexibility when a user intends to add new features to the included algorithms. In this paper, we explore a different approach by designing a component-based architecture for a multi-objective optimization framework based on the observer pattern. In this architecture, most of the algorithmic components are observable entities that naturally allows to register a number of observers. This way, a metaheuristic is composed of a set of observable and observer elements, which can be easily extended without requiring to modify the algorithm. We have developed a prototype of this architecture and implemented the NSGA-II evolutionary algorithm on top of it as a case study. Our analysis confirms the improvement of flexibility using this architecture, pointing out the requirements it imposes and how performance is affected when adopting it.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    In a demanding task, three-handed manipulation is preferred to two-handed manipulation.

    No full text
    Equipped with a third hand under their direct control, surgeons may be able to perform certain surgical interventions alone; this would reduce the need for a human assistant and related coordination difficulties. However, does human performance improve with three hands compared to two hands? To evaluate this possibility, we carried out a behavioural study on the performance of naive adults catching objects with three virtual hands controlled by their two hands and right foot. The subjects could successfully control the virtual hands in a few trials. With this control strategy, the workspace of the hands was inversely correlated with the task velocity. The comparison of performance between the three and two hands control revealed no significant difference of success in catching falling objects and in average effort during the tasks. Subjects preferred the three handed control strategy, found it easier, with less physical and mental burden. Although the coordination of the foot with the natural hands increased trial after trial, about two minutes of practice was not sufficient to develop a sense of ownership towards the third arm

    Entanglement from longitudinal and scalar photons

    Full text link
    The covariant quantization of the electromagnetic field in the Lorentz gauge gives rise to longitudinal and scalar photons in addition to the usual transverse photons. It is shown here that the exchange of longitudinal and scalar photons can produce entanglement between two distant atoms or harmonic oscillators. The form of the entangled states produced in this way is very different from that obtained in the Coulomb gauge, where the longitudinal and scalar photons do not exist. A generalized gauge transformation is used to show that all physically observable effects are the same in the two gauges, despite the differences in the form of the entangled states. An approach of this kind may be useful for a covariant description of the dynamics of quantum information processing.Comment: 12 pages, 1 figur

    Piecewise Linear Representation Segmentation as a Multiobjective Optimization Problem

    Get PDF
    Proceedings of: Forth International Workshop on User-Centric Technologies and applications (CONTEXTS 2010). Valencia, September 7-10, 2010Actual time series exhibit huge amounts of data which require an unaffordable computational load to be processed, leading to approximate representations to aid these processes. Segmentation processes deal with this issue dividing time series into a certain number of segments and approximating those segments with a basic function. Among the most extended segmentation approaches, piecewise linear representation is highlighted due to its simplicity. This work presents an approach based on the formalization of the segmentation process as a multiobjetive optimization problem and the resolution of that problem with an evolutionary algorithm.This work was supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485) and DPS2008-07029-C02-02.Publicad

    Complex Ashtekar variables and reality conditions for Holst's action

    Full text link
    From the Holst action in terms of complex valued Ashtekar variables additional reality conditions mimicking the linear simplicity constraints of spin foam gravity are found. In quantum theory with the results of You and Rovelli we are able to implement these constraints weakly, that is in the sense of Gupta and Bleuler. The resulting kinematical Hilbert space matches the original one of loop quantum gravity, that is for real valued Ashtekar connection. Our result perfectly fit with recent developments of Rovelli and Speziale concerning Lorentz covariance within spin-form gravity.Comment: 24 pages, 2 picture

    Global regulatory architecture of human, mouse and rat tissue transcriptomes

    Get PDF
    Background Predicting molecular responses in human by extrapolating results from model organisms requires a precise understanding of the architecture and regulation of biological mechanisms across species. Results Here, we present a large-scale comparative analysis of organ and tissue transcriptomes involving the three mammalian species human, mouse and rat. To this end, we created a unique, highly standardized compendium of tissue expression. Representative tissue specific datasets were aggregated from more than 33,900 Affymetrix expression microarrays. For each organism, we created two expression datasets covering over 55 distinct tissue types with curated data from two independent microarray platforms. Principal component analysis (PCA) revealed that the tissue-specific architecture of transcriptomes is highly conserved between human, mouse and rat. Moreover, tissues with related biological function clustered tightly together, even if the underlying data originated from different labs and experimental settings. Overall, the expression variance caused by tissue type was approximately 10 times higher than the variance caused by perturbations or diseases, except for a subset of cancers and chemicals. Pairs of gene orthologs exhibited higher expression correlation between mouse and rat than with human. Finally, we show evidence that tissue expression profiles, if combined with sequence similarity, can improve the correct assignment of functionally related homologs across species. Conclusion The results demonstrate that tissue-specific regulation is the main determinant of transcriptome composition and is highly conserved across mammalian species

    Gerasimov-Drell-Hearn sum rule and nucleon structure

    Full text link
    A modification of the Gerasimov--Drell--Hearn sum rule suggested by the current experimental data is presented. Within the conventional theoretical framework, we find it necessary to consider the possibility of the presence of a localized region inside a nucleon, in which the electromagnetic (EM) gauge symmetry is spontaneous broken down, if the constraints of the gauge invariance, Lorentz invariance and the assumption of the commutativity of the EM charge density operator at equal-time are considered. We also discuss the propagation of a virtual photon inside a nucleon under such a scenario. A comment on some of the recent model independent works on the same subject is provided.Comment: 11 pages, 1 figures, RevTeX file, published in 1996, Comments on recent progresses added in the appendi

    Using Comparative Preference Statements in Hypervolume-Based Interactive Multiobjective Optimization

    Get PDF
    International audienceThe objective functions in multiobjective optimization problems are often non-linear, noisy, or not available in a closed form and evolutionary multiobjective optimization (EMO) algorithms have been shown to be well applicable in this case. Here, our objective is to facilitate interactive decision making by saving function evaluations outside the "interesting" regions of the search space within a hypervolume-based EMO algorithm. We focus on a basic model where the Decision Maker (DM) is always asked to pick the most desirable solution among a set. In addition to the scenario where this solution is chosen directly, we present the alternative to specify preferences via a set of so-called comparative preference statements. Examples on standard test problems show the working principles, the competitiveness, and the drawbacks of the proposed algorithm in comparison with the recent iTDEA algorithm
    corecore